Lecture 11: Consumption, Savings, and Investment
 See Barro Ch. 7

Trevor Gallen

Spring, 2016

Household Budget Constraint

$$
\underbrace{P C}_{\text {Nominal Expenditure }}+\underbrace{\Delta B+P \Delta K}_{\text {Nominal Savings }}=\underbrace{\Pi+w L+i(B+P K)}_{\text {Nominal Income }}
$$

- Given real income, tradeoff between consumption and expenditure

Household Budget Constraint

Put Figure 7.1 here

CHANGING THE PROBLEM

- We talk about "real savings" and "real consumption"
- But this is silly: people don't care about "real savings." They care about consumption.
- Consumption today vs. consumption tomorrow.
- Let's think about two periods, and two period budget constraints

Two PERIODS-I

$$
\underbrace{C}_{\text {Real Expenditure }}+\underbrace{\frac{\Delta B}{P}+\Delta K}_{\text {Real Savings }}=\underbrace{\frac{\Pi}{P}+\frac{w}{P} L+i\left(\frac{B}{P}+K\right)}_{\text {Real Income }}
$$

- Things with subscript 0 are preset
- Things with subscript 1 are decided in the first period
- Things with subscript 2 are decided in the second period

$$
\begin{aligned}
& C_{1}+\left(\frac{B_{1}}{P}+K_{1}\right)-\left(\frac{B_{0}}{P}+K_{0}\right)=\left(\frac{w_{1}}{P}\right) L+i_{0}\left(\frac{B_{0}}{P}+K_{0}\right) \\
& C_{2}+\left(\frac{B_{2}}{P}+K_{2}\right)-\left(\frac{B_{1}}{P}+K_{1}\right)=\left(\frac{w_{2}}{P}\right) L+i_{1}\left(\frac{B_{1}}{P}+K_{1}\right)
\end{aligned}
$$

Two PERIODS-I

$$
\underbrace{C}_{\text {Real Expenditure }}+\underbrace{\frac{\Delta B}{P}+\Delta K}_{\text {Real Savings }}=\underbrace{\frac{\Pi}{P}+\frac{w}{P} L+i\left(\frac{B}{P}+K\right)}_{\text {Real Income }}
$$

- Things with subscript 0 are preset
- Things with subscript 1 are decided in the first period
- Things with subscript 2 are decided in the second period

$$
\begin{aligned}
& C_{1}+\left(\frac{B_{1}}{P}+K_{1}\right)-\left(\frac{B_{0}}{P}+K_{0}\right)=\left(\frac{w_{1}}{P}\right) L+i_{0}\left(\frac{B_{0}}{P}+K_{0}\right) \\
& C_{2}+\left(\frac{B_{2}}{P}+K_{2}\right)-\left(\frac{B_{1}}{P}+K_{1}\right)=\left(\frac{w_{2}}{P}\right) L+i_{1}\left(\frac{B_{1}}{P}+K_{1}\right)
\end{aligned}
$$

Two periods-II

$$
\begin{aligned}
& \left(\frac{B_{1}}{P}+K_{1}\right)=\left(\frac{B_{0}}{P}+K_{0}\right)+\left(\frac{w_{1}}{P}\right) L+i_{0}\left(\frac{B_{0}}{P}+K_{0}\right)-C_{1} \\
& C_{2}+\left(\frac{B_{2}}{P}+K_{2}\right)-\left(\frac{B_{1}}{P}+K_{1}\right)=\left(\frac{w_{2}}{P}\right) L+i_{1}\left(\frac{B_{1}}{P}+K_{1}\right)
\end{aligned}
$$

Becomes:

$$
C_{2}+\left(\frac{B_{2}}{P}+K_{2}\right)-\left(\frac{B_{1}}{P}+K_{1}\right)=\left(\frac{w_{2}}{P}\right) L+i_{1}\left(\frac{B_{1}}{P}+K_{1}\right)
$$

